Can GaN HEMT speed reach 1 THz?

Huili (Grace) Xing

Electrical Engineering Department, University of Notre Dame

Edward Beam\(^4\), Yu Cao\(^2\), Tian Fang\(^1\), Faiza Faria\(^1\), Patrick Fay\(^1\), Satyaki Ganguly\(^1\), Xiang Gao\(^3\), Jia Guo\(^1\), Shiping Guo\(^3\), Zongyang Hu\(^1\), Oleg Laboutin\(^2\), Guowang Li\(^1\), Wayne Johnson\(^2\), Andrew Ketterson\(^4\), Kazuki Nomoto\(^1\), Paul Saunier\(^4\), Michael Schuette\(^4\), Berardi SensaleRodriguez\(^1\), Gregory Snider\(^1\), Jai Verma\(^1\), Ronghua Wang\(^1\), Yuanzheng Yue\(^1\), Debdeep Jena\(^1\)*

\(^1\)Electrical Engineering Department, University of Notre Dame, IN 46556 USA.
\(^2\)Kopin Corporation, Taunton, MA 02780 USA
\(^3\)IQE RF LLC. Somerset, NJ 08873 USA.
\(^4\)Triquint Semiconductor, Inc., Richardson, TX 75080 USA

DARPA NEXT program
Outline

• General trend in high speed HEMTs
• What determines the speed?
• Analysis of example high speed GaN HEMTs
• Summary
III-V HEMT: record f_T vs. time

For >20 years, record f_T obtained on InGaAs-channel HEMTs

Jesus del Alamo, MIT (2011) Workshop on High Performance Narrow-Bandgap HEMT
InAs HEMTs: the path to THz electronics?

Huili (Grace) Xing (hxing@nd.edu)
Record f_T III-V HEMTs: megatrends

Over time: $L_g \downarrow$, $\ln_x \text{Ga}_{1-x}\text{As}$ channel $x_{\ln\text{As}} \uparrow$

Jesus del Alamo, MIT (2011) Workshop on High Performance Narrow-Bandgap HEMT
InAs HEMTs: the path to THz electronics?
Record f_T III-V HEMTs: megatrends

Over time: $t_{\text{ch}} \downarrow$, $t_{\text{ins}} \downarrow$

Jesus del Alamo, MIT (2011) Workshop on High Performance Narrow-Bandgap HEMT
InAs HEMTs: the path to THz electronics?
Demonstrated high-speed GaN HEMTs to date

- InAlGaN
 - $t_{\text{Barrier}} \sim 10 \text{ nm}$
 - UND, EDL'12

- AlN/GaN
 - $t_{\text{Barrier}} \sim 4-5 \text{ nm}$
 - HRL, IEDM'11

- InAlN/AlN
 - $t_{\text{Barrier}} \sim 8-10 \text{ nm}$
 - UND, EDL'12

- InAlN/GaN
 - $t_{\text{Barrier}} \sim 8-10 \text{ nm}$
 - UND, EDL'12

Huili Grace Xing
University of Notre Dame - hxing@nd.edu

IWN 2012
Sapporo
Outline

• General trend in high speed HEMTs
• What determines the speed?
• Analysis of example high speed GaN HEMTs
• Summary
HEMT f_T

- f_T measures unity current gain cut off frequency
- For long gate HEMTs, the transit time calculated by $L_g/v_e = C_{gs}/g_m$ is reasonable.
- But, for short gate HEMTs, we must take into account of other effects: fringing capacitance, short channel effects.

\[
\tau = \frac{1}{2\pi f_T} = \frac{C_{gs} + C_{gd}}{g_m} + C_{gd}(R_s + R_d) + \frac{g_{ds}(C_{gs} + C_{gd})(R_s + R_d)}{g_m} = \tau_{int} + \tau_{par}
\]

\[
C_{gs} + C_{gd} = \left(C_{gs,\text{int}} + C_{gd,\text{int}}\right) + \left(C_{gs,\text{ext}} + C_{gd,\text{ext}}\right)
\]

\[
\tau_{int} = \frac{C_{gs,\text{int}} + C_{gd,\text{int}}}{g_m}
\]

\[
= \frac{L_g}{v_e}
\]

\[
\tau_{par} = \frac{g_{ds}(C_{gs} + C_{gd})(R_s + R_d)}{g_m}
\]

Q: when $L_g \rightarrow 0$, $f_T \rightarrow$ THz?

T-gate head $\rightarrow 0$, $f_T \rightarrow$ THz?

Perfect ohmic contacts

Perfect electrostatic control

\Rightarrow no short channel effects

Huili (Grace) Xing (hxing@nd.edu)
Ultimate speed limits in HEMTs: C_{fringing}

To be submitted to TED
Bo Song et al. (UND)
Ultimate speed limits in HEMTs: C_{fringing}

- HRL GaN 20-nm HEMT (IEDM'11)
 - Total delay at $L_g = 20 \rightarrow 0$
 - 0.5 THz

- Teledyne InAs 40-nm HEMT
 - Total delay at $L_g = 40 \rightarrow 0$
 - 2 THz

Solution: high $g_{m,\text{int}}$!

<table>
<thead>
<tr>
<th>Material</th>
<th>$(C_{gs,\text{par}} + C_{gd,\text{par}}) / g_{m,\text{int}}$</th>
<th>$C_{gd} \times R_{en}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaN (HRL)</td>
<td>0.35 ps</td>
<td>0.04 ps</td>
</tr>
<tr>
<td>InGaAs (Teledyne/MIT)</td>
<td>0.09 ps</td>
<td>0.02 ps</td>
</tr>
</tbody>
</table>

To be submitted to TED
Bo Song et al. (UND)

Huili Grace Xing
University of Notre Dame - hxing@nd.edu
Outline

• General trend in high speed HEMTs

• What determines the speed?

• Analysis of example high speed GaN HEMTs
 – Structures with enhanced electrostatic control (SCE ↓)
 – Ohmic contacts (parasitic charging time ↓)
 – Ultrathin surface passivation (gate length extension ↓)
 – Mobility matters

• Summary
AIN/GaN/AlN HEMTs – analog to SiO$_2$/Si/SiO$_2$ FETs

Important for high power and high speed

- High n_s, mobility and saturation velocity
- Thin barrier, short gate length, large barrier height
- High thermal conductivity and breakdown field

Ultra-scaled WBG semiconductor-based devices (e.g. $L_g < 50$ nm, $C_g > 1.6$ μF/cm2 – corresponding to ~ 5 nm thick AlN, ~ 1.6 S/mm assuming 1e7 cm/s)

(From Jesus del Alamo)
Quantum Well GaN HEMTs

AlN/GaN/AlN Ultrathin Body

Ballistic Transport

AlN/GaN HEMT

$R_s=R_d=0$

$T=300K$

$V_g-V_T=0.5V$

$g_{m,int} \sim 3 \text{ S/mm}$

$R_s=R_d=0.1 \text{ Ohm*mm}$

V_D (V)

I_D/W (mA/micron)

I_D (A/mm)

$V_{ds} = +3 \sim -4 \text{ V}$

0.68 A/mm

0.6 0.4 0.2 0.0

V_{ds} (V)

0.0 5 10 15

D. Jena and Guowang Li et al. (UND) EDL 2012

Huili Grace Xing

University of Notre Dame - hxing@nd.edu
Ohmic contact challenge

- Contact resistance (R_C) a function of AlN thickness
- Pre-metallization etch developed for R_C reduction
- $R_C = 0.5$ ohm-mm demonstrated on 5.5 nm AlN barrier
Control regrowth (45 nm n+GaN):

- Sheet charge $\sim 2 \times 10^{15} \text{ cm}^2$
- Mobility $\sim 52 \text{ cm}^2/\text{Vs}$
- $R_{sh} \sim 58 \text{ Ohm/sq}$
- Planar regrowth of high quality
- Lateral regrowth interface needs to be further characterized

Thickness measured by a-step

Jia Guo et al. (UND) PSS(a) 2011

Huili (Grace) Xing (hxing@nd.edu)
Structural quality of regrown contacts

MBE regrowth of S/D successful: high structural quality (gapless, invisible interface). Non-alloyed R_c to regrown InN < 0.02 ohm-mm. R_c to 2DEG ~ 0.05 ohm-mm. Either PECVD SiO$_2$ or ALD Al$_2$O$_3$ regrowth mask results in no damage to 2DEG.

Status:

Plans:

Improve regrowth repeatability from run to run

Huili (Grace) Xing (hxing@nd.edu)
Regrown contacts with n+GaN/2DEG $R_c \sim 0.05$ ohm-mm

1. Regrowth interface resistance ~ 0.05 ohm-mm
2. Total $R_c \sim 0.27$ ohm-mm, dominated by metal/n+GaN resistance (~ 0.15 ohm-mm).
3. We have also demonstrated metal/n+InGaN $R_c < 0.02$ ohm-mm.
Regrown contacts for WBG

Reported contact resistance by regrowth

\begin{align*}
R_c (\text{ohm-mm}) &= \frac{h}{e^2} \sqrt{\frac{2\pi}{n_s}} \\
\end{align*}

Wide bandgap semiconductors
- Afford high \(n_s \).
- Trap density may also be low at the regrowth interface
- Difficult alloyed contacts, but easy regrowth contacts

Jia Guo et al. (UND) EDL 2012

Huili (Grace) Xing (hxing@nd.edu)
Thin surface passivation

NiCT Cat-CVD SiN (e.g. 2006 EDL)
Imec MOCVD SiN (e.g. 2011 EDL)
Ulm Thermal oxide InAlN (e.g. 2010 EDL)

MIT ALD oxides (e.g. 2011 EDL)
UND - DFP Plasma oxide (e.g. 2011 EDL)

Necessary to keep parasitics low
HEMTs with Dielectric-Free Passivation (DFP)

<table>
<thead>
<tr>
<th></th>
<th>Before DFP</th>
<th>After DFP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{sh} (Ω/sq)</td>
<td>n_s (x 10^{13} cm^{-2})</td>
</tr>
<tr>
<td>InAlN_313</td>
<td>290</td>
<td>1.62</td>
</tr>
<tr>
<td>InAlGaN_310</td>
<td>227</td>
<td>1.45</td>
</tr>
</tbody>
</table>

With DFP in the access region only:

- Mobility decreases slightly
- Carrier concentration increases
- Sheet resistance decreases
- g_m increases slightly
- f_t increases from 125 GHz to 210-220 GHz

Huili (Grace) Xing (hxing@nd.edu) Ronghua Wang et al. (UND) EDL 2011
Dielectric-Free Passivation (DFP): I. InAlN

All delay components dropped.

$L_{g,\text{eff}} > 120$ nm prior to DFP

R. Wang et al. IEEE EDL, vol. 32, no. 8, 2011

Ronghua Wang et al. (UND) EDL 2011

Huili (Grace) Xing (hxing@nd.edu)
Dielectric-Free Passivation (DFP): II. InAlGaN

Submitted to EDL, 2011

Little dispersion observed in HEMTs with DFP

Other attributes of DFP:
1. Air stable
2. Little parasitic capacitance
3. Large signal performance yet to be tested.
Dielectric free passivation (DFP) HEMTs: I

Before DFP	**After DFP**
R_{sh} (Ω/sq) | n_s ($x 10^{13}$ cm$^{-2}$) | μ (cm2/V.s) | R_{sh} (Ω/sq) | n_s ($x 10^{13}$ cm$^{-2}$) | μ (cm2/V.s)
--- | --- | --- | --- | --- | ---
InAlN | 290 | 1.62 | 1330 | 257 | 1.86 | 1300
InAlGaN | 227 | 1.45 | 1900 | 190 | 1.83 | 1790

R. Wang et al., (UND) IEEE EDL 2011

Huili (Grace) Xing (hxing@nd.edu)
After device processing,

- the surface Fermi level is pinned at a deep level, probably related with oxidation and N-vacancies.
- the barrier surface become lossy \(\Rightarrow\) dispersion, high \(L_{g,\text{eff}}\)
- DFP can effectively mitigate these issues.
Quaternary Barrier $\text{In}_{0.13}\text{Al}_{0.83}\text{Ga}_{0.04}\text{N}$ HEMTs with f_T/f_{max} of 230/300 GHz

Ronghua Wang, Huili Grace Xing et al. University of Notre Dame

Highest mobility (up to 1920 cm2/V·s) and modest 2DEG density in InN-containing barrier HEMTs

Effective velocity of 1.44×10^7 cm/s, comparable to that of ultra-scaled AlN HEMTs, owing to the high channel mobility

Record high $\sqrt{f_T f_{\text{max}}}$ in InAl(Ga)N HEMTs.

Ronghua Wang, ED7-2, 11:15 am, IWN’12

Huili (Grace) Xing (hxing@nd.edu)
• Near ideal Gate profile has been attempted.
• Higher injection velocity thus higher g_m is desired.
• Ways to inject with higher velocity? Hot-electron injection, InGaN channel …

Summary
Acknowledgement

Students and postdocs
Yu Cao (now Kopin)
David Deen (now U Minn)
Tian Fang (now First Solar)
Zongyang Hu
Fazia Faria
Jia Guo (now On Semiconductor)
Guowang Li
Chuanxin Lian (now Global Semi.)
Berardi Sensale-Rodriguez
John Simon (now NREL)
Ronghua Wang
Tom Zimmermann (now Fraunhofer)
Yuanzheng Yue
Vladimir Protasenko

Collaborators
(University of Notre Dame)
Debdeep Jena
Tom Kosel
Gregory Snider
Patrick Fay
(Triquint Semiconductor) Paul Saunier
(IQE RF LLC) Shiping Guo
(Kopin) Wayne Johnson

Guangle Zhou (now Scandisk)
Alan Seabaugh
Patrick Fay, Thomas Kosel, Mark Wistey

Subrina Rafique
Berardi Sensale-Rodriguez
Rusen Yan
Kristof Tahy (now Intel)
Wan Sik Hwang (now IBM)

DARPA
ONR
AFOSR

GaN research
Sponsored

TFET research
Sponsored
SRC/NRI

Graphene/2D research
Sponsored
NSF
SRC/NRI

Huili (Grace) Xing (hxing@nd.edu)
High conductivity window: 2-5 nm AlN
Best metrics: $n_s = 2 \times 10^{13} \text{ cm}^{-2}$ with $u = 1900 \text{ cm}^2/\text{Vs}$
Y. Cao et al, 2011, JCG

Ongoing work on AlN/GaN/AlN

I. Smorchkova et al, 2000, APL
Y. Cao et al, 2007, APL
Y. Cao et al, 2008, APL

Huili (Grace) Xing (hxing@nd.edu)
UND HEMTs with $f_t > 370$ GHz

Model parameters

- g_m (mS/mm): 864
- g_{ds} (mS/mm): 192
- C_{gs} (fF/mm): 272
- C_{ed} (fF/mm): 30
- R_s (ohm.mm): 0.43
- R_d (ohm.mm): 0.37
- R_e (ohm.mm): 183
- R_l (ohm.mm): 19
- f_t (GHz): 373
- f_{max} (GHz): 28

Huili (Grace) Xing (hxing@nd.edu)
Yuanzheng Yue et al, (UND) EDL 2012